AN APPROXIMATE PHYSICAL MODEL OF
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On the basis of an approximate physical model of mass transfer, the distribution of liquid
mass in the effective diffusion boundary layer of a whirled unidirectional stream is deter-
mined, with the resistance of the liquid phase to mass transfer taken into account.

Several physical models have been proposed for describing the mass transfer in gas—liquid systems
[1-8]. Without further analyzing them — they have been analyzed in [9, 10] — we will only .show here that
each of them more or less reliably describes a certain class of processes characterized by some basic
physicochemical and hydrodynamic parameters.

There is an indisputable interest alive today in research and development coucerning high-efficiency
and high-output mass exchangers which consist of contact stages with the phases interacting in a parallel
flow [11-13].

In order to ensure a sufficiently thorough phase separation between stages, for producing a counter-
flow of the phases throughout the device, and for boosting the mass transfer rate, it is worthwhile to con-
sider a whirled two-phase stream [14-23].

On the basis of certain assumptions, we will analyze here a model of the mass transfer process in
a whirled unidirectional stream, which should be useful for an engineering design of a parallel-flow contact
stage of a mass exchanger.

A two-phase (gas—liquid) stream in a field of centrifugal forces is characterized by an annular flow
mode.

Unlike in a free discharge of liquid or in a counterflow of phases with a negligibly low gas velocity,
here the maximum tangential stress occurs at the interphase boundary (Fig. 1a).

The flow of liquid and gas in a whirled stream is rather helical and, therefore, characterized by
regular vortices {24, 25] in each phase layer. Besides, the presence of an interphase boundary is also a
cause of irregular vortices at that surface [10, 25].

In the case of mass transfer where the ligquid phase resists it, one may assume (counsidering a high
gas velocity and an intensive stirring of the gas by the turbulent fluctuations due to vortices) that the con-
centration of the gas over an entire cross section of the gas stream is equal to its mean concentration
over this section, while the high-velocity gas stream should be viewed as the source of tangential stresses
which ensure the forced helical motion of the liquid.

The existence of appreciable tangential stressed and forced vortices in the liquid layer causes tur-
bulence to develop in the liquid layer and, consequently, tends to equalize both velocities and concentra-
tions within the total mass of liquid.

The liquid layer is not turbulized uniformly throughout its entire thickness. A section of the liquid
annulus contains regions where the hydrodynamic flow mode can be assumed invariable but different than
in the remaining stream (Fig. 1b).

S. M. Kirov Belorussian Institute of Technology, Minsk. Institute of Nuclear Energy, Academy of
Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 23, No. 4,
pp. 713-719, October, 1972. Original article submitted February 21, 1972.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011,
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A
copy of this article is available from the publisher for $15.00.

1305



T
a
' |
Ii
[
\ N
[74
. \ \
\ R b
a
! LN
9
¢ \
1 3
CX N
| R ©
¢ AR
1‘ i
g

-

Fig. 1. Profiles: a) tangential
stresses T = 7(y); b) mean ve-
locity u = u{y); c) concentration
in the liquid phase C = C(y).

Zone 1 at the wall of cylindrical channel is the viscous sublayer

‘region (thickness 6'). Here at y < 8" the velocity varies fast from

zero directly at the solid wall to the mean value U referred to the
stream. The thickness of this zone can be determined from the con-
dition given in [8] with the Reynolds number necessarily of a magni-
tude Re ~ 1.

Zone 2 is the fully turbulent mainstream in the liquid layer.
Both the turbulent fluctuations and the vortices tend to make the
velocity field uniform. Without a large error, the velocity of liquid
in this zone may be assumed equal to the mean stream velocity u.

Zone 3 at the interphase boundary is the turbulent boundary
layer of liquid (thickness 6").. This region is characterized by irre-
gular vortices. A strong interphase surface tension, however, tends
to stabilize this surface somewhat and it determines the velocity
profile here.

Considering that the thickness of this zone is small, we can
accurately enough represent its velocity profile u = u(é") as

, -
gyt u —u
U-—=1u —__?3”_~y,

with u' denoting the velocity of the phases at their boundary.

The characteristics of the concentration profile across the liquid
layer are also shown here (Fig. 1c).

In the diffusion boundary layer, whose thickness is 8, directly
at the wall within the viscous sublayer (y < 6, < 8') the turbulent fluc-
tuations are so small that molecular diffusion becomes the governing
mode of liquid mass transfer here. The concentration in this layer

varies from a minimum value at a given cross section to the mean value C referred to the entire

-layer.

Turbulent fluctuations and intensive vortices within the turbulent mainstream equalize the concentra-
tion over a cross section of that region, and the differential equation of convective diffusion here becomes

C = C = const.

The basic variation in the absorbate concentration occurs within the effective liquid-diffusion bound-~

ary layer, whose thickness is 8.

A qualitative analysis of the interaction between phases, based on the theory of the diffusion boundary
‘layer [8] and taking into account the flow characteristics of a whirled two-phase stream [18], has shown
that the thickness of this diffusion boundary layer here is a function of its hydrodynamic and physicochemi-
cal parameters. At the interphase boundary the concentration of liquid C¥ is equal to its mean concentra-
tion in the gaseous phase at a given cross section. At the boundary with the turbulent mainstream, how-
ever, the concentration of liquid is equal to its mean concentration in the liquid phase.

Such a model describing thé mechanism of interaction between the phases of a gas—liquid system in
a whirled unidirectional flow can serve as the basis for an engineering design of a parallel-flow contact
stage with a prescribed velocity profile the same as in the model.

It is necessary to determine the length of the parallel-flow contact stage, where the mean concen-
tration of the liquid phase C varies from Cg, to C¢ and the stipulated proximity to equilibrium

is equal to ny.

_ ?;f"—ce'

"o,

The differential equation of mass transfer can be written as
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TABLE 1. Experimental Data Pertaining to the Mass Transfer in a
Whirled Two-Phase Stream (CO, absorption in water)

BT s R -
Helix . 1velocfOlYeT ¢ w1cf,, C -107, [ c* .+ 10 g
pitch, |, locity of | ¢ i . i L, mm [ 3 M
- [ity of gas gas, m/ | g/mm? lg/mm-* 1 g/mm < e
}m/sec [sec | ! } ="
28 17,80 53,3 0,60 | >O,38! l 0,5606 446,0 I 4468 '0,642
65 18,75 | 29.4 | 0,66 | 0,368 | 0,585 9345 | 2329 |0.582

In order to solve this equation, one must consider the following simplifications, which are entirely
justified in terms of our model: that the medium is incompressible, the flow is steady, the diffusivity is
constant, and the longitudinal concentration gradient is negligibly smaller than the transverse concentra-
tion gradient. Then

Ox - oyt
where u is the vector of absolute velocity:
U=y — Lg;i Y. (3)

The equation of steady-state mass transfer with the given velocity profile is

@—t) 52 =D 2. 4
where ¢ =u’, b = @'-1)/8", and the boundafy conditions are
C=C, for x=0, (5)
C=C* for y==8, x>0, (6)
dC/3y =0 for y=-=0. (7

It must be emphasized here that the y-axis is perpendicular to the vector of absolute velocity.

For a numerical solution of Eq. (4) we use the finite-differences scheme [26]:
*C ' CWsu, )—2C(ys, x) +Cyg-1, %)
oy? h? '
withh=6"/(n + 1) =6"/4 whenn = 3.

(®

Then Eq. (4) becomes

(a—by;) aC(!gi, ) _ p L, ) —2C (s, %) +Clys- %) o

e
for x==0 C=0C,; Cap1 —C
for y=8 C=C* oy A 0 (10)

where y =6"(k-1)/(n + 1), Finally, system (9) becomes

dc, 1 16
= — = C,—2C,+-C) 1, .
dx a____ba_ [ (6”)2 ( 2 17T 0)]
4
dc, 1 16 1
= — D C,—2C,+C,)) |,
Y [ o G2t 1>J (11
2
dc, 1 16
= D — .
& Ty | Py G2t
4

System (11) with the boundary conditions (10) is solved numerically by the Euler method, according
to which the computation step H is established on the basis of the equation
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Fig. 2. Concenfration distribution C(x, y} i ‘he effective liquid-
diffusion boundary layer along the height of a simulated contact
stage. Simulation I (A): a) L = 20.99 mm; b) 104.99 mm; c)
446.99 mm. Simulation IT (B): a) L = 20.99 mm; b) 83.99 mm;
c¢) 232.99 mm. Concentration C¢ <108 (g/mm2), layer thickness 6
(u).

. .
Cif (xg+H)=Ci5 (x, 0) + —dx—fH (12)

where H is the interval.

The algorithm for a numerical solution yields the concentration profile along the apparatus height,
with a prescribed proximity to the equilibrium concentration at the interphase boundary CX. Furthermore,
one can determine with it the length of a parallel-flow contact stage and the optimum thickness of the effec-
tive liquid diffusion layer §; at the interphase boundary. On the basis of this algorithm, a program has
been set up for the "Minsk-22" digital computer and numerical results are available. It is to be noted that
questions concerning the evaluation of simulated experiments are of interest in their own right and are the
subject of a separate article. Available calculations and results of computer experiments pertaining to the
mass transfer in a two-phase stream whirled throughout the entire channel length yield an estimate of many
important parameters characterizing the hydrodynamics and the mass transfer in such a stream. Using
the data of a computer experiment ("Minsk~22" digital computer) shown in Table 1 as an example, the
authors have calculated the mean flow velocity in the liquid layer and thus its mean thickness, also the
thickness 8 of the effective diffusion layer.

Such a calculation yielded an estimate of the basic parametfers where a laboratory determination
would have been extremely difficult. We obtained: a mean thickness of the liquid layer 6 = 372 u and a
thickness of the liquid diffusion layer 6y = 16.15 u for the first simulated experiment, 6 = 408.5 u and &;
=15 for the second simulated experiment. In addition, this method has made it possible to plot curves
representing the concentration of absorbed gas along the height of a contact stage.

NOTATION
8 is the thickness of the liquid layer, g;
6(',' is the thickness of the effective liquid-diffusion boundary layer, u;
u is the mean velocity, m/sec;
u' is the mean velocity at the interphase boundary, m/sec;

Ef(x, y) is the mean (finite) concentration in the liquid phase, g/mm?;

Cglx, y) is the mean concentration in the liquid phase at the channel entrance, g/m?;

CX(x, y) is the mean concentration of liquid at the interphase boundary, g/mm?, in equilibrium with the
mean concentration in the gaseous phase at a given cross section;

is the proximity to equilibrium;

is the diffusivity in the liquid phase, mm?/sec.

Ud

1308



21.

22.
23.
24,
25,

26.

PRSP ZAPADULILSSY

LITERATURE CITED

W. G. Whitman, Chem. Met. Eng., 28, 147 (1923).
R. Higbie, Trans. AIChE, 31, 365 (1935).
V. D. Stabnikov, Abstract of Doctoral Dissertation [in Russian], Moscow (1939).
I. M. Marchell and H. L. Toor, Ind. Eng. Chem. Fund., 2, No. 1 (1963).
M. Kh. Kishenevskii, Zh. Prikl. Khim., 27, No. 4 (1954).
Damkwerts, AIChE J., 1, 456 (1955).
V. Kafarov, Zh. Prikl. Khim., 29, No. 1 (1956).
G. Levich, Physicochemical Hydrodynamics [in Russian], Fizmatgiz (1959).
M. Ramm, Absorption of Gases [in Russian], Khimiya (1966).
V. Kafarov, Fundamentals of Mass Transfer [in Russian], Vysshaya Shkola (1962).
A. Semenov, Zh. Tekh. Fiz., 14, No. 7-8, 425 (1944).
G. Boyarchuk and A. N. Planovskii, Khim. Promyshl., No. 3 (1962).
. G. Kuz'min and V. A. Malyusov, Dokl. Akad. Nauk SSSR, 117, No. 4 (1957).
Z
A
I
N
. M.
1.

<

. Alimov, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk ﬁnergetika 1 Avtomatika, No. 1 (1962).

. Nikolaev, Abstract of Candidate's Dissertation [in Russian], Kazan (1965).

Ershov and L. M. Gukhman, Inzh.-Fiz. Zh., 10, No. 4 (1966).

. Kiselevand A. A. Noskov, Authors' Disclos. No. 230077, Byull. Izobret., No. 34 (1968).
Gukhman, Abstract of Candidate's Dissertation [in Russian], Minsk (1969).

Ershov and I. M. Plekhov, Authors' Disclos. No. 182108, Byull. Izobret., No. 11 (1966).

A. I. Ershov, I. M. Plekhov, L. M. Gukhman, N. P. Ermakovich, B. N. Isaev, and G. A. Lysakov,

Authors' Disclos. No. 257439, Byull. Izobret., No. 36 {(1969).

L. M. Gukhman, A. I. Ershov, and I. M. Plekhov, in: Heat and Mass Transfer [in Russian], Vol. 4,

Nauka i Tekhnika, Minsk (1968), p. 235.

A. I. Ershov, L. M. Gukhman, and I. M. Plekhov, Izv. VUZ, f]nergetika, No. 5 {1968).

A. I. Ershov, L. M. Gukhman, and I. M. Plekhov, ibid., No. 6 (1969).

L. G. Loitsyanskii, Liquid and Gas Mechanics [in Russian], Fizmatgiz (1959).

N. E. Kochin, I. A. Kibel', and N, V. Roze, Theoretical Hydromechanics [in Russian], Part 1,

GITL, Moscow (1955).

B. P. Demidovich, I. A. Maron, and E. V. Shuvalova, Numerical Methods of Analysis [in Russian],

Nauka, Moscow (1967).

1309



