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On the bas is  of an approximate physical  model of mass  t ransfer ,  the distribution of liquid 
mass  in the effective diffusion boundary layer  of a whirled unidirectional s t r eam is de ter -  
mined, with the res is tance  of the liquid phase to mass  t ransfer  taken into account. 

Several physical  models have been proposed for  descr ibing the mass  t ransfer  in gas - l iqu id  sys tems 
[1-8]. Without fur ther  analyzing them - they have been analyzed in [9, 10] - we will on lyshow here that 
each of them more  or  less  rel iably descr ibes  a cer tain c lass  of p roces se s  charac te r ized  by some basic 
physicochemical  and hydrodynamic pa rame te r s .  

There is an indisputable interest  alive today in r e sea rch  and development concerning high-efficiency 
and high-output mass  exchangers  which consist  of contact stages with the phases interacting in a paral le l  
flow [11-13]. 

In o rde r  to ensure  a sufficiently thorough phase separat ion between stages,  for producing a counter-  
flow of the phases  throughout the device, and for boosting the mass  t ransfer  rate,  it is worthwhile to con- 
s ider  a whirled two-phase s t r eam [14-23]. 

On the basis  of cer tain assumptions,  we will analyze here  a model of the mass  t ransfer  p rocess  in 
a whirled unidirectional s t ream,  which should be useful for  an engineering design of a paral le l - f low contact 
stage of a mass  exchanger.  

A two-phase (gas-liquid) s t r eam in a field of centrifugal forces  is charac te r ized  by an annular flow 
mode. 

Unlike in a free discharge of liquid or  in a counterflow of phases with a negligibly low gas velocity, 
here  the maximum tangential s t r e s s  occurs  at the interphase boundary (Fig. la). 

The flow of liquid and gas in a whirled s t r eam is ra ther  helical and, therefore,  charac te r ized  by 
regular  vor t ices  [24, 25] in each phase layer.  Besides,  the presence  of an interphase boundary is also a 
cause of i r r egu la r  vor t ices  at that surface [10, 25]. 

In the case of mass  t ransfer  where the liquid phase res i s t s  it, one may assume {considering a high 
gas velocity and an intensive s t i r r ing  of the gas by the turbulent fluctuations due to vort ices)  that the con- 
centrat ion of the gas over  an entire c ross  section of the gas s t r eam is equal to its mean concentrat ion 
over  this section, while the high-velocity gas  s t r eam should be viewed as the source of tangential s t r e s se s  
which ensure the forced helical motion of the liquid. 

The existence of appreciable tangential s t r e s sed  and forced vor t ices  in the liquid layer  causes tur-  
bulence to develop in the liquid layer  and, consequently, tends to equalize both velocit ies and concentra-  
tions within the total mass  of liquid. 

The liquid layer  is not turbulized uniformly throughout its entire thickness. A section of the liquid 
annulus contains regions where the hydrodynamic flow mode can be assumed invariable but different than 
in the remaining s t r eam (Fig. lb). 
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Fig. 1. Prof i les :  a) tangential 
s t r e s se s  1- = ~-(y); b) mean ve-  
locity u = u(y); c) concentration 
in the liquid phase C = C (y). 
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var ies  f rom a minimum value at a 
�9 layer .  

Zone i at the wall of cylindrical  channel is the viscous sublayer 
region (thickness 5'). Here at y < 5" the velocity var ies  fast f rom 
zero  direct ly at the solid wall to the mean value ~ re fe r red  to the 
s t ream.  The thickness of this zone can be determined from the con- 
dition given in [8] with the Reynolds number necessar i ly  of a magni-  
tude Re ~ 1. 

Zone 2 is the fully turbulent mains t ream in the liquid layer .  
Both the turbulent fluctuations and the vor t ices  tend to make the 
velocity field uniform. Without a large e r ro r ,  the velocity of liquid 
in this zone may be assumed equal to the mean s t ream velocity ft. 

Zone 3 at the interphase boundary is the turbulent boundary 
layer  of liquid (thickness 5" ) .  This region is charac ter ized  by i r r e -  
gular vort ices .  A strong interphase surface tension, however, tends 
to stabilize this surface somewhat and it determines  the velocity 
profile here.  

Considering that the thickness of this zone is small,  we can 
accura te ly  enough represent  its velocity profile u = u(5") as 

u : = u ' - - - - u ' - - u  g, 

with u'  denoting the velocity of the phases at their boundary. 

The charac te r i s t i cs  of the concentration profile ac ros s  the liquid 
layer  are  also shown here (Fig. lc) .  

In the diffusion boundary layer ,  whose thickness is 5~, direct ly 
at the wall within the viscous sublayer  (y < 5' 0 < 5') the turbulent fluc- 
tuations are  so small  that molecular  diffusion becomes  the governing 
mode of liquid mass  t ransfer  here.  The concentration in this layer  
given c ross  section to the mean value C r e f e r r ed  to the entire 

Turbulent fluctuations and intensive vor t ices  within the turbulent mains t ream equalize the concentra-  
tion over  a c ross  section of that region, and the differential equation of convective diffusion here  becomes 
C = C = coast.  

The basic variat ion in the absorbate concentration occurs  within the effective liquid-diffusion bound- 
a ry  layer ,  whose thickness is 5~'. 

A qualitative analysis of the interaction between phases,  based on the theory of the diffusion boundary 
~layer [8] and taking into account the flow charac te r i s t i cs  of a whirled two-phase s t ream [18], has shown 
that the thickness of this diffusion boundary layer  here  is a function of its hydrodynamic and physicochemi-  
cal pa ramete r s .  At the interphase boundary the concentration of liquid C x is equal to its mean concentra-  
tion in the gaseous phase at a given c ross  section. At the boundary with the turbulent mains t ream,  how- 
ever,  the concentration of liquid is equal to its mean concentrat ion in the liquid phase. 

Such a model describing the mechanism of interaction between the phases of a gas- l iquid  sys tem in 
a whirled unidirectional flow can serve as the basis  for an engineering design of a paral le l - f low contact 
stage with a p resc r ibed  velocity profile the same as in the model. 

It is necessa ry  to determine the length of the paral le l - f low contact stage, where the mean concen- 
trat ion of the liquid phase C var ies  f rom C e to Cf and the stipulated proximity to equilibrium 

C f - - C e  

is equal to ~lf. 

The differential equation of mass  t ransfer  can be written as 

b__C_C -I- div (Cu) - -  div (D grad C) ----- O. (1) 
Ot 
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TABLE 1. 
Whir led  T w o - P h a s e  S t r eam (CO 2 abso rp t i on  in water)  

Helix 
pitch, 
mm 

28 
65 

E x p e r i m e n t a l  Data  Pe r t a in ing  to the Mass  T r a n s f e r  in a 

Mean ax -Mean ab- 
�9 . . lsoluteve- 
lafveloc~ �9 llocity of 
ttyof gaStgas ' m/. 
Im sec |see 

f 
Ce" 108' i Cf* 107, 

g/ram3 I g/ram3 

J 
0,60 0,381 
0,66 0,368 

C *  �9 10 7 

g/mm 3 

0,5606 
0,585 

L, mIi1 

446,0 
234,5 

17,80 53,3 
18,75 29,4 

d 

446,8 0,642 
232,9 0,582 

In o r d e r  to solve this  equat ion,  one m u s t  c o n s i d e r  the fol lowing s impl i f i ca t ions ,  which a r e  en t i r e ly  
jus t i f ied  in t e r m s  of ou r  model :  that  the m e d i u m  is i n c o m p r e s s i b l e ,  the flow is s teady,  the diffusivi ty  is 
cons tant ,  and the longi tudinal  concen t r a t i on  g rad ien t  is negl ig ib ly  s m a l l e r  than the t r a n s v e r s e  c o n c e n t r a -  
t ion grad ien t .  Then  

OC O~C 
u - -  = D , (2) 

Ox oy, 

where  u is the v e c t o r  of absolu te  ve loc i ty :  

/g '  - - / 2  
u = u' Y- (3) 

6" 

The equat ion of  s t e a d y - s t a t e  m a s s  t r a n s f e r  with the given ve loc i ty  prof i le  is 

OC = D O~C 
(a - -  by) ~ 09--- U,  (4) 

whe re  a = u ' ,  b = (u ' - f i ) / 6 " ,  and the bounda ry  condi t ions  a r e  

C --=- Ce. 'for x ==0, (5) 

C~-.~-C* for y = 6 ,  X > 0 ,  (6) 

aC/Oy = 0 for y = 0.- (7) 

It m u s t  be e m p h a s i z e d  he re  that  the y - a x i s  is  p e r p e n d i c u l a r  to the v e c t o r  of  absolu te  ve loc i ty .  

F o r  a n u m e r i c a l  so lut ion of  Eq. (4) we use  the f i n i t e -d i f f e r ences  s c h e m e  [28]: 

c~C ~-" ~ C(yf+i, x) - -  2C(yf,  x) -6 C(!]f-h x) (8) 
Oy ~ h ~ , 

with h = 6 " / ( u  + 1) = 6 " / 4  when n = 3. 

Then  Eq. (4) b e c o m e s  

(a - -  byf)  aC., (gf, x) = D. C (yf+l, x) - -  2C (yf, x) -6 C (yf-l, x) 
Ox h ~ 

(9) 

for X =  0 C = C e ;  .for. y = 0  . . . .  Cn-H--Cn 
�9 for y - ~ 6  C = C * ,  h - = 0 ,  (10) 

w h e r e  Yk = 6 " { k - 1 ) / ( n  + 1). F ina l ly ,  s y s t e m  (9) b e c o m e s  

dC__~l = 1 - [ D  1___66 ( C 2 _  2C 1-6 Co)] ' 
dx a --:- b ~ ( 6") ~ 

4 

dC~ ' 6" [ ( - - ~  (Ca - -  2C.,-6 C1) , (11) 
dx a - -  b - -  

2 

d C s -  1 I 16 ] 
dx a - -  b 36 D --(6,,) 2 (C A - -  2C a + C2) . 

4 

Sys t em (11) with the boundary  condi t ions  (10) is so lved n u m e r i c a l l y  by the E u l e r  method,  a c c o r d i n g  
to which the computa t ion  s tep H is e s t ab l i shed  on the b a s i s  of the equat ion 
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Fig. 2. Concentrat ion distr ibution C (x, y) i: :he effective liquid- 
diffusion boundary layer  along the height of a s imulated contact 
stage. Simulation I (A): a) L = 20.99 mm; b )  104.99 mm; c) 
446.99 mm. Simulation II (B): a) L = 20.99 mm; b) 83.99 mm; 
c) 232.99 mm. Concentrat ion Cf �9 108 (g/mm2), l aye r  thickness 6 
(~). 

dC~, f H, Ci, f (x o -t- H) = C,, f (x, O) + (12) 

where H is the interval .  

The algori thm for a numer ica l  solution yields the concentrat ion prof i le  along the apparatus height, 
with a p r e sc r ibed  proximity  to the equil ibrium concentrat ion at the interphase boundary C x.  F u r th e rmore ,  
one can determine with it the length of a pa ra l l e l ' f low contact  stage and the optimum thickness of the effec-  
tive liquid diffusion layer  5~' at the interphase boundary. On the bas is  of this algori thm, a p rog ram has 
been set  up for the "Minsk-22" digital computer  and numer ica l  r e su l t s  a re  available.  It is to be noted that 
questions concerning the evaluation of simulated exper iments  a re  of in te res t  in their  own right  and are  the 
subject  of a separate  ar t ic le .  Available calculations and resu l t s  of computer  exper iments  pertaining to the 
mass  t rans fe r  in a two-phase s t r e am whirled throughout the ent ire  channel length yield an est imate  of many 
important  p a r a m e t e r s  charac te r iz ing  the hydrodynamics  and the mass  t r ans fe r  in such a s t ream.  Using 
the data of a computer  exper iment  ("Minsk-22" digital computer)  shown in Table 1 as an example,  the 
authors  have calculated the mean flow velocity in the liquid l aye r  and thus its mean thickness,  also the 
thickness 6~' of the effective diffusion layer .  

Such a calculation yielded an es t imate  of the bas ic  p a r a m e t e r s  where a labora tory  determinat ion 
would have been ex t remely  difficult. We obtained: a mean thickness of the liquid l aye r  5 = 572 ~ and a 

M 11 
thickness of the liquid diffusion layer  60 = 16.15 ~ for  the f i r s t  s imulated exper iment ,  6 = 408.5 ~ and 50 
= 15 ~ for the second simulated exper iment .  In addition, this method has made it possible to plot curves  
represen t ing  the concentrat ion of absorbed gas along the height of a contact stage. 

6 is the 
II 

50 is the 
u is the 
u'  is the 
_ Cf(x, y) is the 
Ce(x, y) is the 
cX(x, y) 

D 

N O T A T I O N  

thickness of the liquid layer ,  ~; 
thickness of the effective liquid-diffusion boundary layer ,  /a; 
mean velocity,  m / s e c ;  
mean velocity at the interphase boundary,  m / s e c ;  
mean (finite) concentrat ion in the liquid phase,  g/mm3; 
mean concentrat ion in the liquid phase at the channel entrance,  g/m3; 

is the mean concentrat ion of liquid at the interphase boundary, g /m m  3, in equil ibrium with the 
mean concentrat ion in the gaseous phase at a given c ross  section; 
is the proximi ty  to equil ibrium; 
is the diffusivity in the liquid phase,  mm2/sec .  
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